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Hypothèse

Dans tout ce chapitre, le corps K désigne R ou C.

On peut définir un polynôme en fonction d’un réel x, mais ce même polynôme peut aussi s’appliquer à une
matrice A ∈ Mn(K) avec n ∈ N∗, ou encore à un endomorphisme de groupes f : G → G. Ainsi, c’est bien le
même polynôme qu’on applique à ces trois objets :

P(x) = x3 +2x−4

P(A) = A3 +2A−4In

P( f ) = f 3 +2 f −4idE avec f 3 = f ◦ f ◦ f

On souhaite étudier le polynôme P indépendamment des objets en lequel on l’applique. Cela conduit à définir
un polynôme selon une variable X qui sera appelée une indéterminée : on ne précisera pas l’ensemble auquel X
appartient (en pratique X sera un élément d’une “algèbre”). Le polynôme ci-dessus s’écrira donc :

P(X) = X3 +2X −4

Plus généralement, un tel polynôme peut s’appliquer à tout élément a d’un anneau (A,+,×) :

P(a) = a3 +2a−41A
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1 Opérations sur les polynômes

1.1 Définition

Définition 22.1 – Définition intuitive d’un polynôme

À tout entier n ∈ N et à tout (n+1)-uplet (a0, · · · ,an) ∈Kn+1, on associe un objet P appelé polynôme à
coefficients dans K. On le notera :

P =
n

∑
k=0

akXk = anXn +an−1Xn−1 + . . .+a1X +a0

a0,a1, · · · ,an sont appelés les coefficients de P. Pour tout k ∈ J0,nK, ak est appelé coefficient d’ordre k de
P.
On note K

[
X
]

l’ensemble des polynômes à coefficients dans K.

L’écriture P =
n

∑
k=0

akXk est appelée l’écriture développée de P. On dispose de la règle de calcul suivante : si ak = 0,

alors akXk = 0Xk = 0. On peut alors omettre d’écrire ce terme dans l’écriture de P.

Exemple 1. ◦ P =−X3 +2X est un polynôme : ces coefficients sont (a3,a2,a1,a0) = (−1,0,2,0)

◦ Tout réel est un polynôme : le polynôme 4 correspond au polynôme de coefficient a0 = 4.

◦ Le polynôme 0 est appelé le polynôme nul.

◦ X1/2 et 1+X +X2 +X3 + . . . . . . ne sont pas des polynômes.

À ce stade, l’écriture développée
n

∑
k=0

akXk n’est qu’une notation. Bien qu’elle fasse apparaitre des sommes, des

produits et des puissances, on ne donnera un sens à toutes ces opérations que plus loin.

Remarque. À cause de la règle 0Xk = 0, on peut toujours rajouter des coefficients nuls supplémentaires à un
polynôme sans le modifier. Par exemple, le polynôme P = X +3 peut correspondre aux coefficients (a1,a0) =

(1,3), mais on peut aussi l’écrire P =
3

∑
k=0

akXk avec (a3,a2,a1,a0) = (0,0,1,3).

De ce fait, un même polynôme P admet plusieurs écritures développées. C’est pourquoi on dispose d’une autre
façon de définir un polynôme, plus précise mais plus abstraite :

Définition 22.2 – Définition formelle d’un polynôme

À toute suite (ak)k∈N nulle à partir d’un certain rang, on associe un objet P appelé polynôme à coefficients
dans K, noté :

P =
+∞

∑
k=0

akXk = a0 +a1X +a2X2 + . . .

Comme la suite (ak)k∈N est nulle à partir d’un certain rang, il existe n ∈ N tel que pour tout k ≥ n+1, on a ak = 0.

Cela entraine que P =
n

∑
k=0

akXk et on retrouve la Définition 22.1 : bien que la somme soit infinie, il n’y a qu’un

nombre fini de termes non nuls.
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1.2 Degré d’un polynôme

Définition 22.3 – Degré

Soit P =
n

∑
k=0

akXk un polynôme de K
[
X
]
. On définit son degré, noté degP ou deg(P), comme étant la

valeur suivante :

• Si P ̸= 0, degP est le plus grand entier k ∈ J0,nK tel que ak ̸= 0.

• Si P = 0, on pose par convention deg(0) =−∞.

Exemple 2. Le degré de P = a1X +a0 est ......

P est dit constant si P = a0 avec a0 ∈K, càd si degP........... . En particulier, P est constant non nul ssi
degP.............

Notation. Pour tout n ∈ N, on note Kn
[
X
]

l’ensemble des polynômes de degré au plus n :

Kn
[
X
]

:=
{

P ∈K
[
X
]
| degP ≤ n

}
En particulier K0

[
X
]

est l’ensemble des polynômes constants. En pratique, on identifie K0
[
X
]

à K. Ainsi, un
élément a ∈K peut être considéré comme le polynôme constant égal à a.

Théorème 22.4 – Identification

Soit P,Q ∈K
[
X
]
. P = Q si et seulement si degP = degQ et leurs coefficients de même degré sont égaux

deux à deux.

1.3 Écriture normalisée et vocabulaire lié au degré

La dénomination d’écriture normalisée n’est pas officielle. Mais c’est bien pratique pour fixer les idées.

Théorème 22.5 – Non officiel : écriture “normalisée”

Soit P ∈K
[
X
]

non nul et n ∈ N. Alors degP = n si et seulement s’il existe (a0, · · · ,an) ∈Kn+1 tel que

P =
n

∑
k=0

akXk avec an ̸= 0

Il s’agit de l’écriture normalisée de P. Le (n+1)-uplet (a0, · · · ,an) est alors unique.

L’écriture normalisée a comme avantage d’être unique et de donner directement le degré. Le polynôme nul
n’admet pas d’écriture normalisée.

Exemple 3. Soit P = a2X2+a1X +a0 avec a2 ̸= 0. Alors degP = 2. En revanche si a2 = 0, on aurait degP............
On a vu deux écritures différentes d’un polynôme : développée et normalisée. Selon l’écriture retenue, on n’a pas
la même information sur le degré :
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Théorème 22.6 – Lien entre écriture et degré

Soit P ∈K
[
X
]

et n ∈ N.

• Avec l’écriture développée :

degP ≤ n ⇐⇒ P =
n

∑
k=0

akXk avec a0, · · · ,an ∈K

• Avec l’écriture normalisée :

degP = n ⇐⇒ P =
n

∑
k=0

akXk avec a0, · · · ,an ∈K et an ̸= 0

L’écriture développée de P donne une information sur la valeur maximale du degré de P. L’écriture normalisée
de P donne la valeur précise du degré de P.

Vocabulaire lié au degré. Soit P un polynôme non nul qui a une écriture normalisée P =
n

∑
k=0

akXk avec an ̸= 0.

1. an est appelé le coefficient dominant (ou de plus haut degré) de P. On le note cd(P).

2. anXn est appelé le terme dominant (ou de plus haut degré) de P.

3. P est dit unitaire si an = 1, i.e. si P est de la forme Xn +an−1Xn + . . .a1X +a0

4. P est dit un monôme si an−1 = . . .= a0 = 0, i.e. si P est de la forme anXn (avec an ̸= 0)

On ne peut parler de coefficient dominant (et écrire cd(P)) que si P ̸= 0 !

1.4 Somme de polynômes et multiplication par une constante

Étant donné deux polynômes P et Q, il existe N ∈ N tels que ces polynômes puissent s’écrire sous forme
développée avec N +1 coefficients :

P =
N

∑
k=0

akXk Q =
N

∑
k=0

bkXk

En effet, on peut toujours rajouter des coefficients nuls à P et/ou Q jusqu’à ce qu’ils soient définis avec le même
nombre de coefficients.

Définition 22.7 – Opérations + et λ ·

Soit deux polynômes de K
[
X
]

: P =
N

∑
k=0

akXk Q =
N

∑
k=0

bkXk On définit sur K
[
X
]

la l.c.i. + et la

loi de multiplication par une constante λ ∈K par :

P+Q :=
N

∑
k=0

(ak +bk)Xk
λP :=

N

∑
k=0

(λak)Xk
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P+Q est donc le polynôme obtenu en sommant deux à deux les coefficients de même degré des polynômes P et
Q. On a bien P+Q ∈K

[
X
]

car ∀k ∈ J0,NK ak +bk ∈K.

Ces définitions sont cohérentes avec la linéarité de la somme (symbole ∑) :

λP+µQ = λ

N

∑
k=0

akXk +µ

N

∑
k=0

bkXk =
N

∑
k=0

(λak +µbk)Xk

Grâce à cela, on pourra calculer avec les polynômes comme on a l’habitude de calculer avec les sommes : les
règles de calcul sont identiques.

Théorème 22.8

L’ensemble (K
[
X
]
,+) est un groupe abélien. Son élément neutre est le polynôme nul. Le symétrique d’un

polynôme P pour la loi + est le polynôme −P.

Théorème 22.9 – Degré de λP

Soit P ∈K
[
X
]

et λ ∈K.

deg(λP) =

{
degP si λ ∈K∗

−∞ si λ = 0

Théorème 22.10 – Degré de P+Q

Soit P,Q ∈K
[
X
]

. On a :

deg(P+Q)≤ max(degP,degQ)

De plus, si degP ̸= degQ, alors

deg(P+Q) = max(degP,degQ)

avec la convention max(n,−∞) = n pour tout n ∈ N∪{−∞}.

Si degP= degQ, il peut arriver que deg(P+Q)<max(degP,degQ). Par exemple, si P=X +1 et Q=−X ,
alors deg(P+Q) = .......... tandis que

max(degP,degQ) = 1 ̸=−∞

Démonstration. • Si Q = 0, on a deg(P+0) = degP et max(degP,deg0) = max(degP,−∞) = degP, donc les
deux formules sont vraies. Idem si P = 0.

• Si P ̸= 0 et Q ̸= 0, on pose N = max(degP,degQ) ∈ N. (Quitte à compléter par
des coefficients nuls pour P ou Q) on peut écrire sous forme développée

P =
N

∑
k=0

akXk Q =
N

∑
k=0

bkXk donc P+Q =
N

∑
k=0

(ak +bk)Xk
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L’écriture développée de P+Q montre que deg(P+Q) ≤ N, donc la première
formule. Enfin, si degP ̸= degQ, par exemple degP < degQ, on a aN = 0 ̸= bN ,
et donc (aN +bN) ̸= 0 : ainsi aN +bN est le coefficient dominant de P+Q, donc
deg(P+Q) = N.

Corollaire 22.11

Soit n ∈ N. Si P,Q ∈Kn
[
X
]

, alors ∀λ ,µ ∈K λP+µQ ∈Kn
[
X
]

.

En particulier, Kn
[
X
]

est un sous-groupe de (K
[
X
]
,+).

1.5 Produit de polynômes

Le produit de deux polynômes est calqué sur le produit tel qu’on le calcule dans les réels. En introduction, on
considère donc deux fonctions polynômiales f ,g ∈ RR définies pour tout réel x par :

f (x) =
m

∑
i=0

aixi g(x) =
n

∑
j=0

bixi

avec m,n ∈ N. Le produit f g est aussi une fonction polynômiale :

( f g)(x) =
(
a0 +a1x+a2x2 + . . .+amxm)(b0 +b1x+b2x2 + . . .+bnxn)

= a0b0 + ( )x + ( )x2

+ . . . ( )xm+n−1 + ( )xm+n

Plus généralement, on montre que

( f g)(x) =
n+m

∑
k=0

ckxk avec ck = ∑
0≤i≤m
0≤ j≤n
i+ j=k

aib j = ∑
i+ j=k

aib j

(on sous-entend dans la dernière somme que 0 ≤ i ≤ m et 0 ≤ j ≤ n car les valeurs ai et b j dans la somme n’ont
un sens que sous ces conditions).

Définition 22.12 – Multiplication de polynômes

Soit P =
m

∑
i=0

aiX i et Q =
n

∑
j=0

b jX j deux polynômes. On définit le polynôme produit :

PQ :=
m+n

∑
k=0

ckXk avec ck = ∑
i+ j=k

aib j

(on sous-entend dans la dernière somme que 0 ≤ i ≤ m et 0 ≤ j ≤ n).
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Théorème 22.13 – Degré de PQ

Soit P,Q ∈K
[
X
]

. On a deg(PQ) = degP+degQ.

Cette formule sous-entend la convention n+(−∞) =−∞ pour tout n ∈ N∪{−∞}.

Démonstration.

• Si P = 0, alors PQ = 0 donc :{
deg(PQ) =−∞

degP+degQ =−∞+degQ =−∞

Idem si Q = 0.

• Il reste à prouver le cas où P ̸= 0 et Q ̸= 0. On pose m= degP∈N et n= degQ∈N.
On peut écrire P et Q sous forme normalisée :

P =
m

∑
k=0

akXk Q =
n

∑
k=0

bkXk avec am ̸= 0 et bn ̸= 0

On a

PQ =
m+n

∑
k=0

ckXk avec ck = ∑
i+ j=k

aib j

Ainsi, on a en particulier deg(PQ)≤ m+n. De plus le coefficient de degré m+n
de PQ est cm+n = ambn ̸= 0, on a donc bien deg(PQ) = m+n = degP+degQ.

La preuve ci-dessus montre en particulier P ̸= 0 et Q ̸= 0, le coefficient dominant de PQ est le produit des
coefficients dominants de P et Q :

Corollaire 22.14

Pour tous P,Q ∈K
[
X
]

non nuls, on a cd(PQ) = cd(P)× cd(Q).

En particulier le produit de polynômes unitaires est un polynôme unitaire.

1.6 Intégrité de K
[
X
]

et conséquences

Théorème 22.15

(K
[
X
]
,+,×) est un anneau intègre. Son élément unité est le polynôme constant 1 ∈K0

[
X
]

.
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Démonstration. On vérifie facilement que (K
[
X
]
,+,×) est un anneau non trivial et commutatif. La seule

propriété à vérifier est qu’il n’y a pas de diviseur de zéro dansK
[
X
]

. Supposons par l’absurde queK
[
X
]

possède un diviseur de zéro. Il existe donc P ∈K
[
X
]
\{0} et Q ∈K

[
X
]
\{0} tels que

PQ = 0. En passant au degré, on trouve deg(PQ) =−∞. Or, deg(PQ) = degP+degQ.
Comme P ̸= 0 et Q ̸= 0, on a degP ≥ 0 et degQ ≥ 0. Ainsi, deg(PQ)≥ 0. Contradiction
car deg(PQ) =−∞. Ainsi, K

[
X
]

est un anneau intègre.

Corollaire 22.16

Soit P,Q ∈K
[
X
]

. Si PQ = 0, alors P = 0 ou Q = 0.
Tout polynôme non nul est régulier :

∀A ∈K
[
X
]
\{0} AP = AQ =⇒ P = Q

Théorème 22.17 – Éléments inversibles de K
[
X
]

Soit P ∈ K
[
X
]
. P est inversible si et seulement si P est constant non nul, i.e. P = a0 ∈ K∗. Dans ce cas,

l’inverse de P est le polynôme
1
a0

.

Démonstration. Sens indirect : si P = a0 ∈K∗, alors en posant le polynôme constant Q =
1
a0

, on a bien PQ = 1,

donc P est inversible.Sens direct : on suppose que P est inversible. Montrons que P est
constant non nul. Comme P est inversible, il existe Q ∈K

[
X
]

tel que PQ = 1.

• D’une part, comme PQ = 1, on a nécessairement P ̸= 0 et Q ̸= 0 donc degP ≥ 0
et degQ ≥ 0.

• D’autre part, en passant au degré dans PQ = 1, on a

deg(PQ) = deg1 donc degP+degQ = 0

Ainsi, on a nécessairement degP = degQ = 0. Par conséquent, P est constant
non nul.

Remarque. Pour tous P,Q ∈K
[
X
]

et λ ∈K, on a λ (PQ) = P(λQ) = (λP)Q
On pourra donc écrire λPQ sans ambiguité
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1.7 Puissances d’un polynôme

Définition 22.18

Soit P ∈K
[
X
]

et n ∈ N. On définit le polynôme

Pn = P×·· ·×P︸ ︷︷ ︸
n fois

avec la convention P0 = 1.

Théorème 22.19 – Degré de Pn

Soit P ∈K
[
X
]

et n ∈ N∗.
deg(Pn) = ndegP

La formule reste vraie si n = 0 avec la convention 0× (−∞) = 0, mais cela n’est guère utile à retenir en pratique.

Théorème 22.20 – Formules du binômes et de an −bn (version polynômes)

Pour tous P,Q ∈K
[
X
]

et pour tout n ∈ N,

(P+Q)n =
n

∑
k=0

(
n
k

)
PkQn−k =

n

∑
k=0

(
n
k

)
QkPn−k

Pn −Qn = (P−Q)
n−1

∑
k=0

PkQn−1−k = (P−Q)
n−1

∑
k=0

QkPn−1−k

Pour déterminer le degré d’une somme de polynômes, il vaut mieux l’écrire sous une forme développée
puis chercher le coefficient non nul de plus haut degré.

Exemple 4. Soit un entier n ≥ 1 et P = (X +1)n −Xn −nXn−1. Déterminer le degré et (s’il existe) le coefficient

dominant de P.

P =
n

∑
k=0

(
n
k

)
Xk −Xn −nXn−1 =

n−2

∑
k=0

(
n
k

)
Xk +0

◦ Si n = 1, alors on somme sur le vide et donc P = 0. D’où degP = −∞ et il n’y a
pas de coefficient dominant.

◦ Si n ≥ 2 alors l’écriture montre que degP ≤ n−2. De plus le coefficient de degré
n−2 de P est (

n
n−2

)
=

(
n
2

)
=

n(n−1)
2

̸= 0

Ainsi, degP = n−2 et son coefficient dominant est
n(n−1)

2
.
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1.8 Évaluation en un point

Définition 22.21

Soit P =
n

∑
k=0

akXk et z ∈K. On appelle évaluation de P en z la valeur P(z) dans K définie par :

P(z) =
n

∑
k=0

ak zk = a0 +a1z+a2z2 + · · ·+anzn

On prendra garde au fait que si P = a0, i.e. P est constant, alors P(z) = a0. Bien que P = a0, on écrira toujours
P(z) et non “a0(z)” à cause d’une confusion évidente et dangereuse avec le produit entre a0 ∈K et z ∈K.

Avec des notations évidentes, on a de plus :

(P+Q)(z) = P(z)+Q(z)

(λP)(z) = λP(z)

(PQ)(z) = P(z)Q(z)

Théorème 22.22

Soit z ∈K. L’application

evz : K
[
X
]
→K

P 7→ P(z)

est un morphisme d’anneaux.

Exemple 5. Si P =
n

∑
k=0

akXk alors P(0) =............... et P(1) =...............

1.9 Composition de polynômes

Notation. Jusqu’à présent, on a toujours noté un polynôme avec uniquement la lettre P, mais on peut aussi

l’écrire avec P(X). On peut donc écrire P(X) =
n

∑
k=0

akXk. Cette notation permet de définir par exemple :

P(X2) =
n

∑
k=0

ak(X2)k P(X +1) =
n

∑
k=0

ak(X +1)k

Plus généralement, on a la définition suivante :

Définition 22.23

Soit P =
n

∑
k=0

akXk et Q =
m

∑
j=0

b jX j deux polynômes. On définit le polynôme composée P◦Q par :

P◦Q = P(Q(X)) =
n

∑
k=0

akQk =
n

∑
k=0

ak

(
m

∑
j=0

b jX j

)k
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Exemple 6. Soit P = X2 −X , Q = 2X +1 et R = 3. Calculer :

P◦Q =.......................................................................

Q◦P =.......................................................................

P◦R =.......................................................................

R◦P =.......................................................................

On évitera d’écrire P(Q) : on ne sait pas dire s’il s’agit d’un produit ou d’une composée de P avec Q...
S’il y a un risque de confusion, on écrira donc P(Q(X)) pour une composition, et P(X)Q(X), ou plus
simplement PQ, pour un produit.

Théorème 22.24 – Degré de P◦Q

Soit P,Q ∈K
[
X
]

.

1. Si Q est non constant, alors deg(P◦Q) = degP×degQ.

2. Si Q est constant, alors P◦Q est constant et donc deg(P◦Q)≤ 0.

2 Fonction polynômiale

Définition 22.25 – Fonction polynômiale

Soit X ⊂K et f : X →K. On dit que f est une fonction polynômiale s’il existe un polynôme P ∈K
[
X
]

tel
que

∀x ∈ X f (x) = P(x)

Définition 22.26

Soit P ∈ K
[
X
]
. On définit la fonction polynômiale associée à P comme étant la fonction fP : K → K

définie par
fP : x 7→ P(x)

Cette notation n’est pas officielle. En général, on note plutôt P̃ la fonction fP.

Au lycée, on dit par exemple que la fonction x 7→ x2 + 2x est un polynôme, mais le terme correct est en fait
fonction polynômiale.

Techniquement, on ne doit pas confondre fP, qui est une fonction et donc un élément de KK, et P qui est un
polynôme et donc un élément de K

[
X
]

. Mais en pratique, l’application P 7→ fP est une bijection et cela ne pose
pas de problème. Par abus, on peut donc dire qu’une fonction polynômiale fP est en fait un polynôme.

Les opérations +, λ ·, × et ◦ pour les polynômes sont “compatibles” avec les opérations +, λ ·, × et ◦ entre
fonctions. Cela signifie que pour tous polynômes P,Q et pour tout λ ∈K, on a :

• fP+Q = fP + fQ • fλP = λ fP • fPQ = fP fQ • fP◦Q = fP ◦ fQ

En particulier, l’application P 7→ fP est un morphisme d’anneaux de K
[
X
]

dans KK.
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3 Dérivation formelle dans K
[
X
]

3.1 Définitions et premières propriétés

Soit k ∈ N. Si f est la fonction définie par f (x) = xk, alors

f ′(x) =

{
kxk−1 si k ≥ 1
0 si k = 0

Sur le même principe, on pose

(Xk)′ =

{
kXk−1 si k ≥ 1
0 si k = 0

Définition 22.27

Soit P =
n

∑
k=0

akXk ∈K
[
X
]

. Le polynôme dérivé de P est le polynôme

P′ =
n

∑
k=1

kakXk−1 =
n−1

∑
k=0

(k+1)ak+1Xk

On ne peut pas écrire “X−1”, donc en particulier on ne peut écrire (Xk)′ = kXk−1 que lorsque k ≥ 1.
C’est pourquoi la première somme de la définition commence à l’indice 1.

Sur le principe, la dérivation est en tout point similaire à celle que l’on fait dans les réels :

Exemple 7. On a (−5X3 +4X2 −7)′ = ............................ et plus généralement :

(
n

∑
k=0

akXk

)′

=
n

∑
k=0

ak

(
Xk
)′

= 0+
n

∑
k=1

ak

(
Xk
)′

=
n

∑
k=1

kakXk−1

Bien qu’on ait le droit d’écrire

(
n

∑
k=0

akXk

)′

, on ne peut PAS écrire “

(
n

∑
k=0

akxk

)′

”. C’est vilain, moche,

inadéquat... Beurk. Si f est la fonction définie par f (x) =−5x3 +4x2 −7, on ne peut toujours pas écrire

f ′(x) = (−������
5x3 +4x2−7)′

Remarque. Si K = R, la fonction polynômiale fP est dérivable, et il y a “compatibilité” entre ces notions :
( fP)

′ = fP ′ . Mais la dérivée formelle reste définie si K= C, alors qu’on ne sait pas dériver une fonction définie
sur C. Plus exactement, c’est une dérivation qui est purement algébrique (on n’utilise pas la notion de limite).
C’est pour cela que l’on parle de dérivée formelle.
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3.2 Dérivation et opérations de K
[
X
]

Théorème 22.28 – Dérivation et +,λ ·,×,◦

Soit P,Q ∈K
[
X
]

.

1. Linéarité : pour tous λ ,µ ∈K, on a (λP+µQ)′ = λP′+µQ′.

2. Produit : (P×Q)′ = P′×Q+P×Q′.

3. Composition : (P◦Q)′ = (P′ ◦Q)×Q′.

Exemple 8. Déterminer la dérivée formelle du polynôme P = (2X −1)4.

On a P = Q◦ (2X −1), avec Q = X4, donc

P′ = Q′ ◦ (2X −1)× (2X −1)′ = 4(2X −1)3 ×2 = 8(2X −1)3.

Théorème 22.29 – Degré de P′

Soit P ∈K
[
X
]

.

• Si degP ⩾ 1, alors degP′ = degP−1.

• P′ = 0 si et seulement si P est constant (i.e. degP ≤ 0).

Démonstration. Montrons la première assertion : on pose n = degP ≥ 1, ainsi que P =
n

∑
k=0

akXk avec an ̸= 0. Par définition,

P′ =
n−1

∑
k=0

(k+1)ak+1Xk

On voit ainsi que degP′ ≤ n−1. Le coefficient de degré n−1 est nan qui est non nul
car n ≥ 1 et an ̸= 0. Ainsi, degP′ = n−1.
Pour la seconde assertion, le sens réciproque est évident. Pour le sens direct, on raisonne par contraposée : il
suffit de montrer que si P est non constant, alors P′ ̸= 0. Or, si P est non constant, on a degP ≥ 1, et donc par la
première assertion on a degP′ ≥ 1−1 = 0 ̸=−∞. Ainsi, P′ ̸= 0.

3.3 Dérivée k-ième

Définition 22.30

Soit P ∈K
[
X
]

. On définit récursivement le polynôme dérivé d’ordre k de P, noté P(k) en posant :

• P(0) = P

• Pour tout k ∈ N, P(k+1) = (P(k))′
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Exemple 9 (Important !). Soit k,n ∈ N.

(Xn)(k) =

En particulier (Xn)(n) = ..................

On peut généraliser les propriétés de la dérivée formelle aux dérivées successives :

Théorème 22.31

Soit P,Q ∈K
[
X
]

, et n ∈ N.

• Linéarité : pour tous λ ,µ ∈K, on a (λP+µQ)(n) = λP(n)+µQ(n)

• Formule de Leibniz : (P×Q)(n) =
n

∑
k=0

(
n
k

)
P(k)Q(n−k)

Théorème 22.32 – Degré de P(n)

Soit P ∈K
[
X
]

et n ∈ N.

• Si degP ⩾ n, alors deg(P(n)) = degP−n.

• P(n) = 0 si et seulement si degP ≤ n−1.

Exemple 10. Soit α ∈K et P ∈K
[
X
]

. Déterminer la dérivée k-ième du polynôme Q(X) = P(X +α) en fonction
de celle de P.

La dérivée formelle de Q est

Q′ = (P(X +α))′ = P′(X +α)× (X +α)′ = P′(X +α)

Par une récurrence immédiate, on a Q(k)(X) = P(k)(X +α).

3.4 Formule de Taylor

Théorème 22.33 – Formule de Taylor

Soit n ∈ N et P un polynôme de degré au plus n.

∀α ∈K P(X) =
n

∑
k=0

P(k)(α)

k!
(X −α)k

Si degP < n, alors P(k)(α) = 0 pour tout k ≥ degP+1 : les termes correspondants de la somme sont alors nuls.

Démonstration. Soit α ∈K. On fait d’abord la preuve dans le cas où P est un monôme :
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• on pose P = Xm avec m ∈ J0,nK. On a alors

P(k)(X) =

m(m−1) · · ·(m− k+1)Xm−k =
m!

(m− k)!
Xm−k si k ≤ m

0 si k > m

de sorte que

n

∑
k=0

P(k)(α)

k!
(X −α)k =

m

∑
k=0

P(k)(α)

k!
(X −α)k

=
m

∑
k=0

m!
(m− k)!k!

α
m−k(X −α)k

=
m

∑
k=0

(
m
k

)
(X −α)k

α
m−k

= (X −α +α)m = Xm = P(X)

• On se place dans le cas général avec P de degré au plus n. On pose P =
n

∑
i=0

aiX i.

Pour tout k ∈ J0,nK, par linéarité de la dérivée k-ième :

P(k) =
n

∑
i=0

ai(X i)(k) donc P(k)(α) =
n

∑
i=0

ai(X i)(k)(α)

de sorte que

n

∑
k=0

P(k)(α)

k!
(X −α)k =

n

∑
k=0

∑
n
i=0 ai(X i)(k)(α)

k!
(X −α)k

=
n

∑
k=0

n

∑
i=0

1
k!

ai(X i)(k)(α)(X −α)k

=
n

∑
i=0

ai

(
n

∑
k=0

(X i)(k)(α)

k!
(X −α)k

)

Or, on a prouvé que la formule de Taylor est valide pour les monômes, donc pour tout i ∈ J0,nK :

n

∑
k=0

(X i)(k)(α)

k!
(X −α)k = X i

de sorte que
n

∑
k=0

P(k)(α)

k!
(X −α)k =

n

∑
i=0

aiX i = P(X)

Remarque. En particulier, si P =
n

∑
k=0

akXk, alors par identification, ak =
P(k)(0)

k!
.
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Corollaire 22.34

Si deux polynômes P et Q ont la même fonction polynômiale ( fP = fQ), alors P = Q. En particulier,
l’application P 7→ fP est bijective de K

[
X
]

sur l’ensemble des fonctions polynomiales.

Démonstration. On admettra cette propriété pour K= C. Supposons K= R. Soit P,Q ∈ R
[
X
]

tels que fP = fQ.
Or, pour tout k ∈ N, on a

P(k)(0) = ( fP)
(k)(0) = ( fQ)

(k)(0) = Q(k)(0)

Ainsi, étant donné n ∈ N tel que n ≥ degP et n ≥ degQ, on a

P =
n

∑
k=0

P(k)(0)
k!

Xk =
n

∑
k=0

Q(k)(0)
k!

Xk = Q

Ceci prouve que l’application de R
[
X
]

dans l’ensemble des fonctions polynômiales définie par P 7→ fP est
injective. Elle est par ailleurs surjective par définition des fonctions polynômiales. Elle est donc bijective.

4 Méthodes pour les exercices

Méthode

Pour déterminer le degré d’un polynôme on peut :

• Mettre le polynôme sous la forme dite normalisée, ce qui revient à chercher son coefficient non nul
de plus haut degré.

• Appliquer les formules du degré d’un produit, d’une puissance, d’une composition de deux poly-
nômes (dans le cas d’une somme, il vaut mieux essayer d’abord la première méthode).

Méthode

Pour trouver tous les polynômes qui vérifient une équation donnée, il est souvent utile de raisonner sur le
degré et/ou sur le coefficient dominant.

Méthode

Quand on dispose d’informations sur toutes les dérivées d’un polynôme P en un point α (i.e. P(α), P′(α),
P′′(α), etc.), la formule de Taylor peut être d’une aide précieuse.
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