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Hypothese

Dans tout ce chapitre, le corps K désigne R ou C.

On peut définir un polynéme en fonction d'un réel x, mais ce méme polyndéme peut aussi s’appliquer a une
matrice A € M,,(K) avec n € N*, ou encore a un endomorphisme de groupes f : G — G. Ainsi, c’est bien le
méme polyndme qu’on applique a ces trois objets :
P(x)=x+2x—4
P(A) =A% +2A — 41,
P(f) = f>+2f —4idg avec f> = fofof
On souhaite étudier le polynome P indépendamment des objets en lequel on I'applique. Cela conduit a définir

un polynoéme selon une variable X qui sera appelée une indéterminée : on ne précisera pas I'ensemble auquel X
appartient (en pratique X sera un élément d'une “algebre”). Le polynome ci-dessus s’écrira donc :

P(X)=X>+2X —4
Plus généralement, un tel polynéme peut s’appliquer a tout élément a d'un anneau (A, +, X ) :

Pla)=a’+2a—41,
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Polyndmes (partie A)

1 Opérations sur les polynémes

1.1 Définition

Définition 22.1 - Définition intuitive d’'un polynéme

A tout entier n € N et a tout (n+ 1)-uplet (a,--- ,a,) € K", on associe un objet P appelé polynome a
coefficients dans K. On le notera :

P=Y aXx* = aX'+a X" '+.. . +a1X+ap

n
k=0

ap,ai,- - ,a, sont appelés les coefficients de P. Pour tout k € [0,n], a; est appelé coefficient d’ordre k de
P.
On note K [X ] I’ensemble des polyndmes a coefficients dans K.

n
L'écriture P = Z arX* est appelée I'écriture développée de P. On dispose de la régle de calcul suivante : sia; = 0,
k=0
alors a;X* = 0X* = 0. On peut alors omettre d’écrire ce terme dans I’écriture de P.

Exemple 1. o P = —X>+2X estun polynéme : ces coefficients sont (a3,az2,a1,a9) = (—1,0,2,0)
o Tout réel est un polynéme : le polynéme 4 correspond au polynéme de coefficient ag = 4.
o Lepolynbme 0O estappelé le polynéme nul.
o X7 et 14X+X>+X3+..... ne sont pas des polyndmes.

n
A ce stade, I'écriture développée Z arX* n’est qu'une notation. Bien qu’elle fasse apparaitre des sommes, des
k=0
produits et des puissances, on ne donnera un sens a toutes ces opérations que plus loin.

Remarque. A cause de la régle 0X k=0,0n peut toujours rajouter des coefficients nuls supplémentaires a un
polynome sans le modifier. Par exemple, le polynéme P = X + 3 peut correspondre aux coefficients (a;,ap) =

3
(1,3), mais on peut aussi l'écrire P = Z aX* avec (a3,a2,a1,a9) = (0,0,1,3).
k=0

De ce fait, un méme polyndéme P admet plusieurs écritures développées. C’est pourquoi on dispose d'une autre
facon de définir un polyndme, plus précise mais plus abstraite :

Définition 22.2 — Définition formelle d’'un polynéme

A toute suite (ay )ren nulle a partir d’'un certain rang, on associe un objet P appelé polyndome a coefficients
dans K, noté :

~+oo
P= Zaka = ao—i—alX—l—azXz—l—...
k=0

Comme la suite (g ey est nulle a partir d'un certain rang, il existe n € N tel que pour toutk > n+1,onaa; =0.
n

Cela entraine que P = Z a;X* et on retrouve la Définition 22.1 : bien que la somme soit infinie, il n’y a qu'un
k=0
nombre fini de termes non nuls.
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Polyndmes (partie A)

1.2 Degré d’'un polynome

Définition 22.3 — Degré

n
Soit P = Z axX* un polynéme de K [X } On définit son degré, noté deg P ou deg(P), comme étant la
k=0
valeur suivante :

e Si P # 0, degP estle plus grand entier k € [0,n] tel que a; # 0.

e Si P =0, on pose par convention deg(0) = —eco.

Exemple 2. Le degré de P = a; X +qag est ......

Q P est dit constant si P = agp avec ap € K, cad si degP........... . En particulier, P est constant non nul ssi
degP.............

Notation. Pour toutn € N, on note K, [X ] I'ensemble des polynémes de degré| au plus |n:

K, [X] :={P e K[X] |degP <n}

En particulier Ky [X ] est 'ensemble des polyndmes constants. En pratique, on identifie Kg [X } a K. Ainsi, un
élément a € K peut étre considéré comme le polyné6me constant égal a a.

Théoréme 22.4 - Identification |

SoitP,Q € K [X ] . P = (Qsietseulementsideg P = degQ et leurs coefficients de méme degré sont égaux
deux a deux.

1.3 Ecriture normalisée et vocabulaire lié au degré

La dénomination d’écriture normalisée n’est pas officielle. Mais c’est bien pratique pour fixer les idées.

Théoreme 22.5 — Non officiel : écriture “normalisée” |

Soit P € K[X} non nul et n € N. Alors deg P = n si et seulement s'il existe (ag, - - ,a,) € K" tel que

n
P= Zaka avec a, # 0
k=0

Il s’agit de I'écriture normalisée de P. Le (n+ 1)-uplet (ao,- - - ,a,) est alors unique.

L'écriture normalisée a comme avantage d’étre unique et de donner directement le degré. Le polynome nul
n'admet pas d’écriture normalisée.

Exemple 3. Soit P = axX 24 a1 X + ap avec ay # 0. Alors deg P = 2. En revanche si a; = 0, on aurait degP............
On a vu deux écritures différentes d'un polyndme : développée et normalisée. Selon I'écriture retenue, on n'a pas
la méme information sur le degré :
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Polyndmes (partie A)

Théoréme 22.6 — Lien entre écriture et degré

Soit P € K[X] etn € N.

e Avec I'écriture développée :

e Avec I'écriture normalisée :

Lécriture développée de P donne une information sur la valeur maximale du degré de P. L'écriture normalisée
de P donne la valeur précise du degré de P.

n
Vocabulaire lié au degré. Soit P un polynéme non nul qui a une écriture normalisée P = Z arX* avec a, # 0.
k=0
. ay est appelé le coefficient dominant (ou de plus haut degré) de P. On le note cd(P).

1
2. a,X" est appelé le terme dominant (ou de plus haut degré) de P.

3. Pestdit unitaire sia, =1, i.e. si P est de la forme X"+a, 1 X"+..a1X +ag
4

. Pestditun mondémesia, | =...=ay =0, i.e.si P est dela forme a, X" (avec a, # 0)
c On ne peut parler de coefficient dominant (et écrire cd(P)) que si P # 0!

1.4 Somme de polyndmes et multiplication par une constante

Etant donné deux polynémes P et Q, il existe N € N tels que ces polyndmes puissent s'écrire sous forme
développée avec N + 1 coefficients :

N N
P=Y ax* 0=Y bx*
k=0 k=0

En effet, on peut toujours rajouter des coefficients nuls a P et/ou Q jusqu’a ce qu’ils soient définis avec le méme
nombre de coefficients.

Définition 22.7 - Opérations + et A -

: N N :
i Soit deux polynémes de K [X] : P= Z aka 0= Z kak On définit sur K[X] lalci. +etla
. k=0 k=0 '
. loi de multiplication par une constante A € K par: E
: v N :
: P+Q:= Z(ak—l—bk)X" AP = Z(lak)Xk .
1 k=0 k=0 !
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Polyndmes (partie A)

P+ Q est donc le polyndome obtenu en sommant deux a deux les coefficients de méme degré des polynémes P et
0.OnabienP+Q € K[X} carVk € [O,N] ar+br € K.

Ces définitions sont cohérentes avec la linéarité de la somme (symbole Z) :

N N N
AP+uQ = AY ax+uY bxt =Y (Aac+ub) X*
k=0 k=0 k=0
Grace a cela, on pourra calculer avec les polyn6mes comme on a I’habitude de calculer avec les sommes : les
régles de calcul sont identiques.

Théoréme 22.8 |

Lensemble (K [X } ,+) est un groupe abélien. Son élément neutre est le polynéme nul. Le symétrique d'un
polyndéme P pour la loi + est le polyndome —P.

Théoréme 22.9 — Degré de AP

Soit P € K[X] et € K.
degP sid e K"

Théoreme 22.10 — Degréde P+ Q

Soit P,Q € K[X].Ona:

Sideg P =deg Q, il peut arriver que deg(P+ Q) < max(deg P,deg Q). Par exemple,siP =X +1etQ = —X,
alorsdeg(P+ Q) = .......... tandis que

max(degP,degQ) =1 # —oo

Démonstration. e SiQ=0,onadeg(P+0)=degP et max(degP,deg0) = max(deg P, —o) = deg P, donc les
deux formules sont vraies. Idem si P = 0.



Corollaire 22.11 |

Soitn e N.SiP,Q €K, [X],alors VA,ueK AP+uQekK,[X].
En particulier, K, [X] est un sous-groupe de (K [X],+).

1.5 Produit de polynémes

Le produit de deux polynémes est calqué sur le produit tel qu’on le calcule dans les réels. En introduction, on

considere donc deux fonctions polynémiales f, g € R® définies pour tout réel x par :
m . n .
flx)= Zaix’ glx) = Z bix'
i=0 =0

avec m,n € N. Le produit fg est aussi une fonction polynoémiale :

(fe)(x) = (ag +ax+ax® + ... +amxm) (b() +bhix+byx* + ... —i—bnx”)
=apby + ( )x + ( )x*
4o ( )xm+n—1 4 ( )xm-i-n
Plus généralement, on montre que

n—+m

(fg)(x) = Z ckxk avec ¢y — Z aibj = Z Cl,'bj
k=0 0<i<m i+j=k
0<j<n
i+j=k

(on sous-entend dans la derniere somme que 0 <i <met0 < j < n car les valeurs g; et b; dans la somme n’ont

un sens que sous ces conditions).

Définition 22.12 — Multiplication de polyndmes

n n
SoitP=) a;X'etQ= Z b;X’ deux polynomes. On définit le polyndme produit :
i=0 Jj=0

(on sous-entend dans la derniere somme que 0 <i <met0 < j <n).
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Théoréeme 22.13 — Degré de PQ

Soit ,Q € K[X].Ona deg(PQ) = degP +degQ.

Cette formule sous-entend la convention n + (—eo) = —oo pour toutn € NU {—co}.

Démonstration.

O

La preuve ci-dessus montre en particulier P # 0 et Q # 0, le coefficient dominant de PQ est le produit des
coefficients dominants de Pet Q :

Corollaire 22.14 |

Pour tous P, Q € K[X| non nuls, on a cd(PQ) = cd(P) x cd(Q).

En particulier le produit de polynémes unitaires est un polynéme unitaire.

1.6 Intégrité de K [X] et conséquences

| Théoréeme 22.15 |

(K[X],+, %) est un anneau integre. Son élément unité est le polynome constant 1 € Ko [X].

G. Peltier 7116



Polyndmes (partie A)

Démonstration. On vérifie facilement que (K[X] ,+, x) est un anneau non trivial et commutatif. La seule

propriété a vérifier est qu'il n'y a pas de diviseur de zéro dans K [X ] .

Corollaire 22.16 |

Soit P,Q € K[X].SiPQ =0, alors P=00uQ =0.
Tout polynéme non nul est régulier :

VA e K[X]\ {0} AP=AQ =— P=Q

Théoréme 22.17 - Eléments inversibles de K [X ]

Soit P € K [X ] . P est inversible si et seulement si P est constant non nul, i.e. P = ag € K*. Dans ce cas,

I'inverse de P est le polynbme —.
ao

1
Démonstration. Sens indirect : si P = ay € K, alors en posant le polynéme constant Q = —, on a bien PQ = 1,
ao
donc P est inversible.

Remarque. Pourtous ,Q € K[X] etA € K,ona A(PQ)=P(AQ)=(AP)Q
On pourra donc écrire A PQ sans ambiguité
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1.7 Puissances d’un polynéme

Définition 22.18 |

Soit P € K[X| etn € N. On définit le polynome

avec la convention P° = 1.

Théoreme 22.19 - Degré de P"

Soit P € K[X] etn € N*.
deg(P") = ndegP

La formule reste vraie si n = 0 avec la convention 0 x (—eo) = 0, mais cela n’est guére utile a retenir en pratique.

Théoréme 22.20 — Formules du bindmes et de ¢ — b" (version polynémes)

Pour tous P, Q € K[X] et pour toutn € N,

eror =3 (7)ot =5 (7)o

k=0 k=0

n—1 n—1
P _Qn — (P— Q) Z Pan—l—k — (P—Q) Z QkPn—l—k
k=0 k=0

Pour déterminer le degré d’'une somme de polynomes, il vaut mieux |’écrire sous une forme développée
puis chercher le coefficient non nul de plus haut degré.

Exemple 4. Soit un entiern > 1 et P = (X 4 1)" — X" —nX""!. Déterminer le degré et (s'il existe) le coefficient

dominant de P.
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1.8 Evaluation en un point

Définition 22.21 |

k=0

n
Soit P = Z a;X* et z € K. On appelle évaluation de P en z la valeur P(z) dans K définie par :

On prendra garde au fait que si P = ay, i.e. P est constant, alors P(z) = ao. Bien que P = ay, on écrira toujours
P(z) et non “ap(z)” a cause d'une confusion évidente et dangereuse avec le produit entre ap € K et z € K.

Avec des notations évidentes, on a de plus :

Théoréme 22.22 |
Soit z € K. L'application
ev.: K[X] = K
P P(z)
est un morphisme d’anneaux.
n
Exemple5. SiP =) aX*alors  P(0) =............... et P(l) =,

k=0

1.9 Composition de polyndmes

Notation. Jusqu’a présent, on a toujours noté un polyndme avec uniquement la lettre P, mais on peut aussi

n
I’écrire avec P(X). On peut donc écrire P(X) = Z aiX¥. Cette notation permet de définir par exemple :

k=0
P(X?) = i ar(X?)k
k=0

Plus généralement, on a la définition suivante :

Définition 22.23 |

k= j=0

P(X+1)= iak(X—i-l)k
k=0

n m
SoitP=Y aX*etQ= Z b;X’ deux polynémes. On définit le polyndme composée Po Q par :
=0
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Exemple 6. Soit P =X>—X, Q=2X+1 et R=23.Calculer:

On évitera d’écrire P(Q) : on ne sait pas dire s'il s’agit d'un produit ou d'une composée de P avec Q...
§’ily a un risque de confusion, on écrira donc P(Q(X)) pour une composition, et P(X)Q(X), ou plus
simplement PQ, pour un produit.

Théoréeme 22.24 — Degréde Po Q

Soit P,Q € K[X].
1. Si Q est non constant, alors deg(Po Q) = deg P x deg Q.
2. SiQ est constant, alors P o Q est constant et donc deg(Po Q) < 0.

2 Fonction polynomiale

Définition 22.25 — Fonction polynémiale

que

Définition 22.26 |

Soit P € K[X]. On définit la fonction polyndmiale associée a P comme étant la fonction fp : K — K
définie par

fpix— P(x)

Cette notation n’est pas officielle. En général, on note plut6t P la fonction fp-

Au lycée, on dit par exemple que la fonction x — x> 4 2x est un polynéome, mais le terme correct est en fait
fonction polyndmiale.

Techniquement, on ne doit pas confondre fp, qui est une fonction et donc un élément de KX, et P qui est un
polyndéme et donc un élément de K [X } . Mais en pratique, I'application P — fp est une bijection et cela ne pose
pas de probleme. Par abus, on peut donc dire qu'une fonction polynomiale fp est en fait un polynéme.

Les opérations +, A+, X et o pour les polyndmes sont “compatibles” avec les opérations +, A+, X et o entre
fonctions. Cela signifie que pour tous polynomes P, Q et pour tout A € K, on a:

e frio=Jrtfo o fir=AfpP e fro=frfo e fpoo = fPofo

En particulier, I'application P — fp est un morphisme d’anneaux de K [X ] dans K¥.
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3 Dérivation formelle dans K [X ]

3.1 Définitions et premieéres propriétés

Soit k € N. Si f est la fonction définie par f(x) = xk, alors

kAl sik>1
/ _ il
f(x)_{o sik=0

Sur le méme principe, on pose

(xby = kX sik>1
o sik=0

Définition 22.27 |

n
Soit P = Y axX* € K[X]. Le polynome dérivé de P est le polynome
k=0

Q On ne peut pas écrire “X ", donc en particulier on ne peut écrire (X*) = kX*~! que lorsque k > 1.
C’est pourquoi la premiere somme de la définition commence a I'indice 1.

Sur le principe, la dérivation est en tout point similaire a celle que 'on fait dans les réels :

Exemple 7. Ona (—5X>+4X%—7) = ..o, et plus généralement :

n ! n ’ n ’ n
(Z aka> = Zak (Xk) = 0+ Zak (Xk) = Z’kaka*l
k=1 k=1

!/ /
n n
A Bien qu’on ait le droit d’écrire (Z arX k> , on ne peut PAS écrire “ (Z akxk> ”. C’est vilain, moche,
k=0

k=0
inadéquat... Beurk. Si f est la fonction définie par f(x) = —5x% +4x% — 7, on ne peut toujours pas écrire

f'(x) = (—323 4457 =7)

Remarque. Si K = R, la fonction polynémiale fp est dérivable, et il y a “compatibilité” entre ces notions :
(fp)' = fp:. Mais la dérivée formelle reste définie si K = C, alors qu’on ne sait pas dériver une fonction définie
sur C. Plus exactement, c’est une dérivation qui est purement algébrique (on n’utilise pas la notion de limite).
C’est pour cela que I'on parle de dérivée formelle.
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3.2 Dérivation et opérations de K [X }

Théoréme 22.28 — Dérivationet +,A4-, x, 0

Soit P,Q € K[X].
1. Linéarité : pour tous A, € K,ona (AP +uQ) = AP +uQ'.
2. Produit: (Px Q) =P xQ+Px(Q.
3. Composition: (PoQ) = (P o Q) x Q.

Exemple 8. Déterminer la dérivée formelle du polynéme P = (2X — 1)*.

Théoréme 22.29 - Degré de P’

Soit P € K[X].
e SidegP > 1,alorsdegP’ = degP — 1.

e P’ =0 siet seulement si P est constant (i.e. deg P < 0).

Démonstration.

Pour la seconde assertion, le sens réciproque est évident. Pour le sens direct, on raisonne par contraposée : il
suffit de montrer que si P est non constant, alors P’ # 0. Or, si P est non constant, on a degP > 1, et donc par la
premiére assertion on adegP’ > 1 —1 =0 # —oo. Ainsi, P’ # 0. O

3.3 Dérivée k-ieme

Définition 22.30 |

SoitP € K [X } . On définit récursivement le polynéme dérivé d’ordre k de P, noté P® en posant : E

e Pourtoutk € N, P&+ = (pH)y
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Exemple 9 (Important!). Soitk,n € N.
(xm)® =

En particulier (X)) = ...
On peut généraliser les propriétés de la dérivée formelle aux dérivées successives :

Théoréme 22.31 |

Soit P,Q € K[X],etn e N.
e Linéarité : pour tous A, it € K, ona (AP +uQ)"™ = AP" 4+ uo®

e Formule de Leibniz: (P x Q) = ) (Z) PRk
k=0

Théoréme 22.32 — Degré de P

Soit P € K[X] etneN.
e SidegP > n, alors deg(P") = degP —n.

e P =(sietseulement si degP <n—1.

Exemple 10. Soit & € K et P € K[X]. Déterminer la dérivée k-ieme du polynome Q(X) = P(X + ) en fonction
de celle de P.

3.4 Formule de Taylor

Théoréeme 22.33 — Formule de Taylor

Soitn € N et P un polyndme de degré au plus 7.

SidegP < n, alors P () = 0 pour tout k > deg P+ 1 : les termes correspondants de la somme sont alors nuls.

Démonstration. Soit a € K. On fait d’abord la preuve dans le cas o P est un mondme :
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n
)y k! (X_O‘)kzz k! (X —a)f
k=0 k=0 :
nonoq N '
=Y Y ax) @) - o)
k=0i=0""
n n (Xi)(k)(a)
~Ya <Z S -
=0 \k=0 :
Or, on a prouvé que la formule de Taylor est valide pour les monomes, donc pour tout i € [0,x1] :
n Xi (k) )
( ) (a)(X—a)k:Xl
k!
k=0 :
de sorte que
PR (g n :
3 P o apt — 3 ax = px)
k=0 : i=0
O
"k P (0)
Remarque. En particulier, si P = Z a; X", alors par identification, a; = T

k=0
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Corollaire 22.34 |

Si deux polynémes P et Q ont la méme fonction polynémiale (fp = fp), alors P = Q. En particulier,
I'application P — fp est bijective de K [X ] sur ’ensemble des fonctions polynomiales.

Démonstration. On admettra cette propriété pour K = C. Supposons K = R. Soit P,Q € R [X ] tels que fp = fp.
Or, pour toutk € N,ona

PR(0) = (f)(0) = (f0)(0) = 2W(0)
Ainsi, étant donnén € Ntel quen > degP etn > deg(Q, ona

= PY(0) 0
P:k;) k! x =Y

Ceci prouve que I'application de R [X } dans I'’ensemble des fonctions polynémiales définie par P — fp est
injective. Elle est par ailleurs surjective par définition des fonctions polyndémiales. Elle est donc bijective. O

4 Méthodes pour les exercices

]

Méthode

Pour déterminer le degré d'un polynéme on peut :

e Mettre le polyndme sous la forme dite normalisée, ce qui revient a chercher son coefficient non nul
de plus haut degré.

e Appliquer les formules du degré d’'un produit, d'une puissance, d'une composition de deux poly-
ndémes (dans le cas d'une somme, il vaut mieux essayer d’abord la premiere méthode).

]

Méthode

Pour trouver tous les polynémes qui vérifient une équation donnée, il est souvent utile de raisonner sur le
degré et/ou sur le coefficient dominant.

| Méthode |

Quand on dispose d’informations sur toutes les dérivées d’'un polynéme P en un point & (i.e. P(a), P'(a),
P"(a), etc.), la formule de Taylor peut étre d'une aide précieuse.
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